Зачем нужен арксинус? Решение уравнения (sin x=a)
Чтобы понять зачем придумали арксинус, давайте решим уравнение: (sin x=frac{1}{2}).
Это не вызывает затруднений:
( left[ begin{gathered}x=frac{π}{6}+2πn, n∈Z\ x=frac{5π}{6}+2πl, l∈Zend{gathered}right.)
Внимание! Если вдруг затруднения всё же были, то почитайте здесь о решении простейших уравнений с синусом.
А теперь решите уравнение: (sin x=frac{1}{3}).
Что тут будет ответом? Не (frac{π}{6}), не (frac{π}{4}), даже не (frac{π}{7}) – вообще никакие привычные числа не подходят, однако при этом очевидно, что решения есть. Но как их записать?
Вот тут-то на помощь и приходит арксинус! Значение правой точки равно (arcsinfrac{1}{3}), потому что известно, что синус равен (frac{1}{3}). Длина дуги от (0) до правой точки тогда тоже будет равна (arcsinfrac{1}{3}). Тогда чему равно значение второй точки? С учетом того, что правая точка находится на расстоянии равному (arcsinfrac{1}{3}) от (π), то её значение составляет (π- arcsinfrac{1}{3}).
Ок, значение этих двух точек нашли. Теперь запишем полный ответ: ( left[ begin{gathered}x=arcsin frac{1}{3}+2πn, n∈Z\ x=π-arcsin frac{1}{3}+2πl, l∈Zend{gathered}right.) Без арксинусов решить уравнение (sin x=frac{1}{3}) не получилось бы. Как и уравнение (sin x=0,125), (sin x=-frac{1}{9}), (sin x=frac{1}{sqrt{3}}) и многие другие. Фактически без арксинуса мы можем решать только (9) простейших уравнений с синусом:
С арксинусом – бесконечное количество.
Пример. Решите тригонометрическое уравнение: (sin x=frac{1}{sqrt{3}}). Решение:
Ответ: ( left[ begin{gathered}x=arcsin frac{1}{sqrt{3}}+2πn, n∈Z\ x=π-arcsin frac{1}{sqrt{3}}+2πl, l∈Zend{gathered}right.)
Пример. Решите тригонометрическое уравнение: (sin x=frac{1}{sqrt{2}}).
Решение: Кто поторопился написать ответ ( left[ begin{gathered}x=arcsin frac{1}{sqrt{2}}+2πn, n∈Z\ x=π-arcsin frac{1}{sqrt{2}}+2πl, l∈Zend{gathered}right.), тот на ЕГЭ потеряет 2 балла. Дело в том, что в отличии от прошлых примеров (arcsin frac{1}{sqrt{2}}) – вычислимое значение, но чтобы это стало очевидно нужно избавиться от иррациональности в знаменателе аргумента. Для этого умножим и числитель и знаменатель дробь на корень из двух (frac{1}{sqrt{2}} = frac{1 cdot sqrt{2}}{sqrt{2} cdot sqrt{2}}= frac{sqrt{2}}{2}). Таким образом, получаем:
(arcsin frac{1}{sqrt{2}} = arcsin frac{sqrt{2}}{2}=frac{π}{4})
Значит в ответе вместо арксинусов нужно написать (frac{π}{4}).
Ответ: ( left[ begin{gathered}x=frac{π}{4}+2πn, n∈Z\ x=frac{3π}{4}+2πl, l∈Zend{gathered}right.)
Пример. Решите тригонометрическое уравнение: (sin x=frac{7}{6}).
Решение: И вновь тот, кто поторопился написать ( left[ begin{gathered}x= arcsin frac{7}{6}+2πn, n∈Z\ x=π- arcsinfrac{7}{6}+2πl, l∈Zend{gathered}right.) на ЕГЭ потеряет (2) балла. Что не так? – спросите вы. Ведь точно не табличное значение, почему нельзя написать (arcsinfrac{7}{6})? Пролистайте до самого верха, туда, где было определение арксинуса. Там написана маленькая, но очень важная деталь – аргумент арксинуса должен быть меньше или равен (1) и больше или равен (-1). Ведь синус не может выходить за эти пределы! И если решить уравнение с помощью круга, а не бездумно пользоваться готовыми формулами, то станет очевидно, что у такого уравнения решений нет.
Ответ: решений нет.
Думаю, вы уловили закономерность.
Если (sin x) равен не табличному значению между (1) и (-1), то решения будут выглядеть как: ( left[ begin{gathered}x= arcsin a +2πn, n∈Z\ x=π- arcsin a +2πl, l∈Zend{gathered}right.)
Решение №1 (электронный вид):
решение скоро будет
Как вычислить арксинус?
Чтобы вычислить арксинус – нужно ответить на вопрос: синус какого числа (лежащего в пределах от (-frac{π}{2}) до (frac{π}{2}) ) равен аргументу арксинуса?
Например, вычислите значение арксинуса:
а) Синус какого числа равен (-frac{1}{2})? Или в более точной формулировке можно спросить так: если (sin x=-frac{1}{2}), то чему равен (x)? Причем, обратите внимание, нам нужно такое значение, которое лежит между (-frac{π}{2}) и (frac{π}{2}). Ответ очевиден:
(arcsin(-frac{1}{2})=-frac{π}{6})
б) Синус какого числа равен (frac{sqrt{3}}{2})? Кто-то вспоминает тригонометрический круг, кто-то таблицу, но в любом случае ответ (frac{π}{3}).
(arcsin(-frac{sqrt{3}}{2})=-frac{π}{3})
(arcsin(-1)=-frac{π}{2})
Тригонометрический круг со всеми стандартными арксинусами: