Перевод чисел в различные системы счисления с решением

Вычитание дробей

Эта операция проводится аналогично сложению. Чтобы вычесть две дроби с одинаковыми знаменателями, нужно найти разность их числителей, а знаменатель оставить тем же.

Пример:

7/9 — 2/9 = (7-2) / 9 = 5/9

Задание:

Выполни вычитание дробей с одинаковыми знаменателями:

vychitanie-drobej.png

Для дробей с разными знаменателями также придется найти наименьшее общее кратное и дополнительные множители. Затем, по аналогии со сложением, произвести вычитание.

Пример:

6/7 — 8/10 = (6*10-8*7) / 70 = (60-56) / 70 = 4/70

Задание:

Выполни вычитание дробей с разными знаменателями:

vychitanie-drobej-s-raznymi-znamenateljami.png

Сложение и вычитание десятичных дробей

Сложение (вычитание) десятичных дробей выполняется так же, как сложение (вычитание) натуральных чисел: главное, чтобы запятая во втором числе стояла под запятой в первом.

                      ce9e59861315d7f43476830856ba1793.png        10a13ed2ad08bf91dc8d3cca64205e8c.png                      

Чтение десятичных дробей

Десятичная дробь в обязательном порядке содержит запятую. Та числовая часть дроби, которая располагается левее запятой, называется целой; правее – дробной:

Дробная часть десятичной дроби состоит из десятичных знаков (десятичных разрядов):

  • десятые – 0,1 (одна десятая);
  • сотые – 0,01 (одна сотая);
  • тысячные – 0,001 (одна тысячная);
  • десятитысячные – 0,0001 (одна десятитысячная);
  • стотысячные – 0,00001 (одна стотысячная);
  • миллионные – 0,000001 (одна миллионная);
  • десятимиллионные – 0,0000001 (одна десятимиллионная);
  • стомиллионные – 0,00000001 (одна стомиллионная);
  • миллиардные – 0,000000001 (одна миллиардная) и т. д.

Как правильно читать десятичную дробь:

  • прочитать число, составляющее целую часть дроби и добавить слово “целых“;
  • прочитать число, составляющее дробную часть дроби и добавить название младшего разряда.
  • 0,25 – ноль целых двадцать пять сотых;
  • 9,1 – девять целых одна десятая;
  • 18,013 – восемнадцать целых тринадцать тысячных;
  • 100,2834 – сто целых две тысячи восемьсот тридцать четыре десятитысячных.

Что такое смешанные дроби?

В математике выделяют дроби правильные и неправильные. Правильные — те, у которых числитель меньше знаменателя. Например: 1/3, 2/5, 4/12. Но бывает и так, что числитель становится больше знаменателя. Если объяснять предметно, то взято больше частей пирога, чем было тех, на которые он поделен. Такое вполне возможно и в жизни, и в математике.

У таких дробей можно отделить целую часть и оставшуюся после этого дробную. То есть будет видно, сколько взято целых пирогов и плюс определенное количество его частей. Нужно хорошо представить себе описанное, или даже проверить на практике, а не просто заучивать формулы. Тогда сокращение дробей будет выполняться ребенком осмысленно и безошибочно.

Для того чтобы трансформировать неправильную дробь в смешанное число, следует сперва числитель поделить на знаменатель. В результате почти всегда получим целое число и какой-то остаток. Целое число и нужно записать, как целую часть. А остаток — отправить в числитель дробной части. Неизменным остается только знаменатель.

Неправильными называют и дроби с одинаковым числом над и под дробной чертой: 6/6, 12/12 и т. д. Очевидно, что превратить их можно в 1. Наглядно это взято столько кусочков пирога, на сколько он и был поделен, т. е. целый пирог.

Примеры:

  • 14/5 = (5*2+4) / 5 = 2 4/5
  • 21/6 = (6*3+ 3) / 6 = 3 3/6

Задание:

Выделите целую часть из неправильных дробей:

  • 15/4,
  • 22/12,
  • 30/7.

Можно провести противоположную процедуру — превратить смешанное число в неправильную дробь. Эта операция часто применяется в математических вычислениях, поэтому будет полезным узнать о ней. Для этого нужно сперва умножить целую часть и знаменатель. Затем получившееся число прибавить к числителю, а знаменатель оставить прежним.

Примеры:

  • 3 1/8 = (3*8+1) / 8 = 25/8
  • 7 4/9 = (7*9+4) / 9 = 67/9

Задание:

1. Преобразовать в смешанное число неправильную дробь:

  • 27/4,
  • 18/5,
  • 45/7.

2. Выполнить обратную первой задачу — смешанное число превратить в неправильную дробь:

  • 3 4/5;
  • 12 7/11.

Умножение десятичных дробей

Чтобы перемножить две десятичные дроби, нужно перемножить их как обычные числа, не обращая внимания на запятые. Потом сложить количество знаков после запятой в первом числе и во втором, а затем отделить полученное количество знаков в итоговом числе, считая справа налево.

Лучше (1) раз посмотреть на картинку, чем (10) раз прочитать, поэтому наслаждайтесь:

590c1dc1544e5f061207a19ff792602b.png

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий