Примеры
Пример 1
20x² – 15x – 10 = 0
Лучше сразу выписать так: a = 20, b = – 15, c = – 10.
1. Ищем дискриминант: формула D = b² – 4ac <=> D = (– 15)² – 4 × 20 × (– 10) = 225 + 800 = 1025; D > 0 <=> значит есть два корня.
2. Ищем эти корни: формула корней
2.1. Разбиваем формулу на две части, первый корень:
Уравнение 20x² – 15x – 10 = 0, где a = 20, b = – 15, c = – 10; D =1025.
x1 = ((–(–15)) + √ 1025)/(2×20) = (15 + 32,0156) / 40 ≈ 1,17539
2.2. Второй корень:
Уравнение 20x² – 15x – 10 = 0, где a = 20, b = – 15, c = – 10; D =1025.
x2 = ((–(–15)) – √ 1025)/(2×20) ≈ (15 – 32,0156) / 40 ≈ -0,42539
Пример 2
–x² +6x + 18 = 0
a = –1, b = 6, c = 18
Дискриминант D = b² – 4ac
D = 6² – 4×(–1)×(18) = 36 + 72 = 108, D > 0 <=> есть два корня
Ищем корни:
a = –1, b = 6, c = 18, D = 108
X1,2 = ((–6) ±√108)/(2×(–1)) =>
x1 = ((–6) +√108)/(–2) = ((–6) + 10,3923)/(–2) = – 2,19615
x2 = ((–6) –√108)/(–2) = ((–6) – 10,3923)/(–2) = 8,19615
Как разложить квадратный трёхчлен на множители?
Продолжим с примером уравнения 20x² – 15x – 10 = 0
Мы уже нашли корни
x1 ≈ 1,17539, x2 ≈ -0,42539
Выносим коэффициент x² за скобки, и оба корня ставятся с противоположными знаками таким образом:
20x² – 15x – 10 = 20 (x – 1,17539) (x+0,42539)
Хотите проверить? Открываем скобки и проверяем
20 (x – 1,17539) (x+0,42539) = 20 (x²–1,17539x + 0,42539x–0,42539×1,17539) = 20 (x²–0,75x – 0,4999991521) =
20 x²–15x–9,999983042
Погрешность в 0,000016958 должна быть из-за округления в предыдущих расчётах.