Что делать если дискриминант отрицательный

Задача №3. Определение сторон прямоугольного треугольника

67a758e6beb62a3283253bc43c4a10de.jpg

Еще одним примером с дискриминантом квадратного уравнения является следующая задача: известно, что разность между двумя сторонами прямоугольника равна 70 см. Необходимо найти его стороны, если диагональ фигуры равна 130 см.

Условие задачи позволяет составить систему из двух уравнений:

x1 — x2 = 70

(x1)2 + (x2)2 = 1302.

Здесь x1 и x2 — неизвестные стороны прямоугольника. Поясним, откуда взялось второе уравнение. Поскольку диагональ прямоугольника образует с двумя его сторонами треугольник с углом 90o, то стороны его, которые равны x1 и x2, являются катетами, поэтому можно воспользоваться их связью с диагональю -гипотенузой (теорема Пифагора).

Выразив из первого уравнения x2, подставив его значение во второе уравнение, и раскрыв в нем скобки, получаем: 2 * (x1)2 — 140 * x1 — 12 000 = 0. Решаем это классическое уравнение квадратное: D = (140)2 — 4 * 2 * (-12 000) = 115600. Использование калькулятора позволяет рассчитать корень из этого числа, он равен 340. Корни этого уравнения равны: x1 = (140 ± 340) / 4 = (120; -50). Отрицательное число следует сразу отбросить, поскольку сторона прямоугольника — положительная величина.

Подставляя x1 = 120 см в первое уравнение системы, получаем, что x2 = 50 см.

Таким образом, неизвестные стороны прямоугольника равны 120 см и 50 см.

Задача №4. Два мотоциклиста

38434c473ed06c4e9b36cbbb3f01aaba.jpg

Следующий пример уравнения через дискриминант связан с решением задачи про двух мотоциклистов. Известно, что каждый из них выехал навстречу другому. Начальное расстояние между ними было равно 130 км, скорость одного составляла 30 км/ч, а другой ехал со скоростью на 33 км/ч больше, чем число часов, через которые они встретились. Необходимо найти, через какое время встретятся мотоциклисты.

Обозначим неизвестное время буквой t. Из условия задачи следует, что скорость второго мотоциклиста равнялась 33 + t. До встречи каждый мотоциклист проехал расстояние 30 * t и (33 + t) * t. Очевидно, что в момент встречи оба транспортных средства преодолели суммарное расстояние 130 км (см. условие задачи). Тогда получаем уравнение: 30 * t + (33 + t) * t = 130. Раскрывая скобки, получаем следующий вид: t2 + 63 * t — 130 = 0. Вычисляем в этом примере дискриминант: D = (63)2 -4 * 1 * (-130) = 4489. Корень из него будет равен 67. Значения t, удовлетворяющие уравнению, будут равны: t = (-63 ± 67) / 2 = (2; -65). Поскольку время не может быть отрицательным, получаем ответ на задачу: мотоциклисты встретятся через 2 часа.

Свойства дискриминанта

  • Дискриминант равен 0, когда многочлен имеет кратные корни (равные корни). Дискриминант является симметрическим многочленом относительно корней многочлена и поэтому является многочленом от его коэффициентов; более того, коэффициенты этого многочлена целые независимо от расширения, в котором берутся корни.

Задача № 1. Произведение и сумма чисел

Первым примером уравнения с дискриминантом будет следующий: необходимо назвать два числа, сумма которых равна 34, а произведение 273.

Согласно условию задачи, составим систему уравнений, обозначив неизвестных два числа, как x1 и x2. Получаем:

x1 + x2 = 34

x1 * x2 = 273.

Выразив x2 через x1 в первом уравнении, и подставив его во второе, имеем: (34 -x1) * x1 = 273. Раскрывая скобки, получим: (x1)2 — 34 * x1 + 273 = 0. То есть условие задачи свелось к решению уравнения квадратного.

Решаем этот пример формулой с дискриминантом: D = (-34)2 — 4 * 1 * 273 = 64. Получилось удобное для вычисления корня квадратного число. Решения этого уравнения будут иметь вид: x1 = (34 ± √64) / 2 = (21; 13). Каждое из полученных чисел x1 подставим в первое уравнение приведенной выше системы, получаем: x2 = (34 — 21 = 13; 34 — 13 = 21).

Таким образом, всего одна пара чисел (13 и 21) удовлетворяет условию задачи. Поскольку сумму мы уже проверили, то проверим теперь произведение: 13 * 21 = 273.

Квадратные уравнения

Примеры с дискриминантом относятся к решению уравнений квадратных. Такие уравнения имеют вид, представленный на фото ниже.

c27f6a671c885fee5cf7307d978897f0-150x150.jpgВам будет интересно:Диагностика Стребелевой: описание метода, применение, особенности, отзывы

32a639014c4c5de9871902a6f742f6aa.jpg

Здесь a, b и c — это некоторые коэффициенты (числа), которые называются квадратичным, линейным и свободным членом, соответственно. Если известны значения икса такие, при которых равенство на фото является истиной, тогда говорят о том, что они являются корнями этого уравнения.

Как можно заметить, это уравнение называется квадратным, потому что «2» является максимальной степенью, в которую возводится x. Если a = 0, тогда уравнение превращается в линейное.

Поскольку максимальная степень уравнения равна двум, то существовать могут только 0, 1 или 2 его корня, которые будут принимать действительные числовые значения.

Чтобы решить названное уравнение, можно воспользоваться несколькими методами. Тем не менее, самым простым и надежным из них является применение формулы с дискриминантом.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий